{"id":434959,"date":"2024-10-20T07:47:00","date_gmt":"2024-10-20T07:47:00","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-iec-ieee-63195-12023\/"},"modified":"2024-10-26T14:45:38","modified_gmt":"2024-10-26T14:45:38","slug":"bs-en-iec-ieee-63195-12023","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-iec-ieee-63195-12023\/","title":{"rendered":"BS EN IEC\/IEEE 63195-1:2023"},"content":{"rendered":"

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
2<\/td>\nundefined <\/td>\n<\/tr>\n
5<\/td>\nAnnex ZA (normative)Normative references to international publicationswith their corresponding European publications <\/td>\n<\/tr>\n
6<\/td>\nBlank Page <\/td>\n<\/tr>\n
7<\/td>\nEnglish
CONTENTS <\/td>\n<\/tr>\n
14<\/td>\nFOREWORD <\/td>\n<\/tr>\n
16<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
17<\/td>\n1 Scope <\/td>\n<\/tr>\n
18<\/td>\n2 Normative references
3 Terms and definitions
3.1 Exposure metrics and parameters <\/td>\n<\/tr>\n
21<\/td>\n3.2 Spatial, physical, and geometrical parameters associated with exposure metrics <\/td>\n<\/tr>\n
22<\/td>\n3.3 Measurement instrumentation, field probe, and data-processing parameters <\/td>\n<\/tr>\n
25<\/td>\n3.4 RF power parameters <\/td>\n<\/tr>\n
26<\/td>\n3.5 Test device technical operating and antenna parameters <\/td>\n<\/tr>\n
28<\/td>\n3.6 Test device physical configurations <\/td>\n<\/tr>\n
29<\/td>\n3.7 Uncertainty parameters <\/td>\n<\/tr>\n
30<\/td>\n4 Symbols and abbreviated terms
4.1 Symbols
4.1.1 Physical quantities <\/td>\n<\/tr>\n
31<\/td>\n4.1.2 Constants
4.2 Abbreviated terms <\/td>\n<\/tr>\n
32<\/td>\n5 Quick start guide and application of this document
5.1 Quick start guide <\/td>\n<\/tr>\n
33<\/td>\nTables
Table 1 \u2013 Evaluation plan check-list <\/td>\n<\/tr>\n
34<\/td>\nFigures
Figure 1 \u2013 Quick Start Guide <\/td>\n<\/tr>\n
35<\/td>\n5.2 Application of this document
5.3 Stipulations
6 Measurement system and laboratory requirements
6.1 General requirements <\/td>\n<\/tr>\n
36<\/td>\n6.2 Laboratory requirements <\/td>\n<\/tr>\n
37<\/td>\n6.3 Field probe requirements
6.4 Measurement instrumentation requirements <\/td>\n<\/tr>\n
38<\/td>\n6.5 Scanning system requirements
6.5.1 Single-probe systems
6.5.2 Multiple field-probe systems <\/td>\n<\/tr>\n
39<\/td>\n6.6 Device holder requirements <\/td>\n<\/tr>\n
40<\/td>\n6.7 Post-processing quantities, procedures, and requirements
6.7.1 Formulas for calculation of sPD <\/td>\n<\/tr>\n
42<\/td>\n6.7.2 Post-processing procedure <\/td>\n<\/tr>\n
43<\/td>\n6.7.3 Requirements
Figure 2 \u2013 Simplified view of a generic measurement setupinvolving the use of reconstruction algorithms <\/td>\n<\/tr>\n
44<\/td>\n7 Protocol for PD assessment
7.1 General
7.2 Measurement preparation
7.2.1 Relative system check
7.2.2 DUT requirements <\/td>\n<\/tr>\n
45<\/td>\n7.2.3 DUT preparation <\/td>\n<\/tr>\n
46<\/td>\n7.2.4 Selecting evaluation surfaces <\/td>\n<\/tr>\n
47<\/td>\nFigure 3 \u2013 Cross-sectional view of SAM phantom for SAR evaluationsat the reference plane, as described in IEC\/IEEE 62209-1528:2020
Figure 4 \u2013 Cross-sectional view of SAM virtual phantom for PD evaluations at the reference plane (shell thickness is 2 mm everywhere, including at the pinna) <\/td>\n<\/tr>\n
49<\/td>\n7.3 Tests to be performed
7.3.1 General
Figure 5 \u2013 Example reference coordinate system forthe left-ear ERP of the SAM phantom
Figure 6 \u2013 Example reference points and vertical and horizontal lines on a DUT <\/td>\n<\/tr>\n
51<\/td>\n7.3.2 Tests to be performed when supported by simulations of the antenna array
Figure 7 \u2013 Flow chart for test procedure in 7.3 <\/td>\n<\/tr>\n
53<\/td>\n7.3.3 Tests to be performed by measurements of the antenna array
7.4 Measurement procedure
7.4.1 General measurement procedure <\/td>\n<\/tr>\n
54<\/td>\n7.4.2 Power density assessment methods
Figure 8 \u2013 Flow chart for general measurement procedure in 7.4.1 <\/td>\n<\/tr>\n
55<\/td>\nFigure 9 \u2013 Flow chart for power density assessment methods in 7.4.2
Table 2 \u2013 Minimum evaluation distance between the DUT antenna andthe evaluation surface for which the plane wave equivalent approximation applies <\/td>\n<\/tr>\n
56<\/td>\n7.4.3 Power scaling for operating mode and channel <\/td>\n<\/tr>\n
58<\/td>\n7.4.4 Correction for DUT drift <\/td>\n<\/tr>\n
59<\/td>\n7.5 Exposure combining
7.5.1 General <\/td>\n<\/tr>\n
60<\/td>\n7.5.2 Combining power density and SAR results <\/td>\n<\/tr>\n
62<\/td>\nFigure 10 \u2013 SAR and power density evaluation at a point r
Figure 11 \u2013 Combining SAR (top) and power density (bottom) for the SAM phantom <\/td>\n<\/tr>\n
63<\/td>\n8 Uncertainty estimation
8.1 General
8.2 Requirements for uncertainty evaluations
8.3 Description of uncertainty models <\/td>\n<\/tr>\n
64<\/td>\n8.4 Uncertainty terms dependent on the measurement system
8.4.1 CAL \u2013 Calibration of the measurement equipment
8.4.2 COR \u2013 Probe correction
8.4.3 FRS \u2013 Frequency response <\/td>\n<\/tr>\n
65<\/td>\n8.4.4 SCC \u2013 Sensor cross coupling <\/td>\n<\/tr>\n
66<\/td>\n8.4.5 ISO \u2013 Isotropy
8.4.6 LIN \u2013 System linearity error
8.4.7 PSC \u2013 Probe scattering <\/td>\n<\/tr>\n
67<\/td>\n8.4.8 PPO \u2013 Probe positioning offset
8.4.9 PPR \u2013 Probe positioning repeatability <\/td>\n<\/tr>\n
68<\/td>\n8.4.10 SMO \u2013 Sensor mechanical offset
8.4.11 PSR \u2013 Probe spatial resolution
8.4.12 FLD \u2013 Field impedance dependence (ratio |E|\/|H|)
8.4.13 MED \u2013 Measurement drift <\/td>\n<\/tr>\n
69<\/td>\n8.4.14 APN \u2013 Amplitude and phase noise
8.4.15 TR \u2013 Measurement area truncation
8.4.16 DAQ \u2013 Data acquisition
8.4.17 SMP \u2013 Sampling
8.4.18 REC \u2013 Field reconstruction <\/td>\n<\/tr>\n
70<\/td>\n8.4.19 SNR \u2013 Signal-to-noise ratio
8.4.20 TRA \u2013 Forward transformation and backward transformation <\/td>\n<\/tr>\n
71<\/td>\n8.4.21 SCA \u2013 Power density scaling
8.4.22 SAV \u2013 Spatial averaging
8.4.23 COM \u2013 Exposure combining
8.5 Uncertainty terms dependent on the DUT and environmental factors
8.5.1 PC \u2013 Probe coupling with DUT <\/td>\n<\/tr>\n
72<\/td>\n8.5.2 MOD \u2013 Modulation response
8.5.3 IT \u2013 Integration time <\/td>\n<\/tr>\n
73<\/td>\n8.5.4 RT \u2013 Response time
8.5.5 DH \u2013 Device holder influence
8.5.6 DA \u2013 DUT alignment
8.5.7 AC \u2013 RF ambient conditions
8.5.8 TEM \u2013 Laboratory temperature <\/td>\n<\/tr>\n
74<\/td>\n8.5.9 REF \u2013 Reflections in laboratory
8.5.10 MSI \u2013 Measurement system immunity\/secondary reception
8.5.11 DRI \u2013 DUT drift
8.6 Combined and expanded uncertainty <\/td>\n<\/tr>\n
75<\/td>\nTable 3 \u2013 Template of measurement uncertainty for power density measurements <\/td>\n<\/tr>\n
77<\/td>\nTable 4 \u2013 Example measurement uncertainty budget forpower density measurement results <\/td>\n<\/tr>\n
78<\/td>\n9 Measurement report
9.1 General
9.2 Items to be recorded in measurement reports <\/td>\n<\/tr>\n
81<\/td>\nAnnex A (normative)Measurement system check and system validation tests
A.1 Overview <\/td>\n<\/tr>\n
82<\/td>\nA.2 Normalization to total radiated power
A.2.1 General
A.2.2 Option 1: Accepted power measurement <\/td>\n<\/tr>\n
83<\/td>\nFigure A.1 \u2013 Recommended accepted power measurement setupfor relative system check, absolute system check and system validation
Figure A.2 \u2013 Equipment setup for measurement offorward power Pf and forward coupled power Pfc
Figure A.3 \u2013 Equipment setup for measuringthe shorted reverse coupled power Prcs <\/td>\n<\/tr>\n
84<\/td>\nFigure A.4 \u2013 Equipment setup for measuring thepower with the reference antenna <\/td>\n<\/tr>\n
85<\/td>\nFigure A.5 \u2013 Port numbering for the S-parametermeasurements of the directional coupler <\/td>\n<\/tr>\n
86<\/td>\nA.2.3 Option 2: Total radiated power measurement
Table A.1 \u2013 Example of power measurement uncertainty <\/td>\n<\/tr>\n
87<\/td>\nA.3 Relative system check
A.3.1 Purpose
A.3.2 Antenna and test conditions <\/td>\n<\/tr>\n
88<\/td>\nA.3.3 Procedure
A.3.4 Acceptance criteria <\/td>\n<\/tr>\n
90<\/td>\nA.4 Absolute system check
A.4.1 Purpose
A.4.2 Antenna and test conditions
A.4.3 Procedure
A.4.4 Acceptance criteria <\/td>\n<\/tr>\n
91<\/td>\nA.5 System validation
A.5.1 Purpose
A.5.2 Procedure <\/td>\n<\/tr>\n
92<\/td>\nA.5.3 Validation of modulation response
A.5.4 Acceptance criteria
Table A.2 \u2013 Communication signals for modulation response test <\/td>\n<\/tr>\n
94<\/td>\nAnnex B (normative)Antennas for system check and system validation tests
B.1 General <\/td>\n<\/tr>\n
95<\/td>\nB.2 Pyramidal horn antennas for system checks
Table B.1 \u2013 Target values for pyramidal horn antennas at different frequencies <\/td>\n<\/tr>\n
96<\/td>\nB.3 Cavity-fed dipole arrays for system validation
B.3.1 Description
Table B.2 \u2013 Main dimensions for the cavity-fed dipole arraysat each frequency of interest <\/td>\n<\/tr>\n
97<\/td>\nFigure B.1 \u2013 Main dimensions for the cavity-fed dipole arrays \u2013 30 GHz design <\/td>\n<\/tr>\n
98<\/td>\nTable B.3 \u2013 Geometrical parameters of the cavity-fed dipole arraysat each frequency of interest
Table B.4 \u2013 Substrate and metallic block parameters for the cavity-fed dipole arrays at each frequency of interest <\/td>\n<\/tr>\n
99<\/td>\nB.3.2 Numerical target values for cavity-fed dipole arrays
B.3.3 Field and power density distribution patterns
Table B.5 \u2013 Target values for the cavity-fed dipole arrays at10 GHz, 30 GHz, 60 GHz, and 90 GHz <\/td>\n<\/tr>\n
100<\/td>\nFigure B.2 \u2013 10 GHz patterns of |Etotal| and Re{S}total for the cavity-fed dipole arrays at distances ofa) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate <\/td>\n<\/tr>\n
101<\/td>\nFigure B.3 \u2013 30 GHz patterns of |Etotal| and Re{S}total for the cavity-fed dipole arrays at distances ofa) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate <\/td>\n<\/tr>\n
102<\/td>\nFigure B.4 \u2013 60 GHz patterns of |Etotal| and Re{S}total for the cavity-fed dipole arrays at distances ofa) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate <\/td>\n<\/tr>\n
103<\/td>\nFigure B.5 \u2013 90 GHz patterns of |Etotal| and Re{S}total for the cavity-fed dipole arrays at distances ofa) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the dielectric substrate <\/td>\n<\/tr>\n
104<\/td>\nB.3.4 Far-field radiation patterns <\/td>\n<\/tr>\n
105<\/td>\nFigure B.6 \u2013 Far-field radiation patterns of a) 10 GHz, b) 30 GHz,c) 60 GHz, and d) 90 GHz cavity-fed dipole arrays <\/td>\n<\/tr>\n
106<\/td>\nB.4 Pyramidal horns with slot arrays for system validation
B.4.1 Description
Figure B.7 \u2013 Main dimensions for the 0,15 mm stainless steel stencil with slot array <\/td>\n<\/tr>\n
107<\/td>\nFigure B.8 \u2013 Main dimensions for the pyramidal horn antennas
Table B.6 \u2013 Main dimensions for the stencilwith slot array for each frequency <\/td>\n<\/tr>\n
108<\/td>\nB.4.2 Numerical target values for pyramidal horns loaded with a slot array
Table B.7 \u2013 Primary dimensions for the correspondingpyramidal horns at each frequency <\/td>\n<\/tr>\n
109<\/td>\nB.4.3 Field and power density distribution patterns
Table B.8 \u2013 Target values for the pyramidal horns loaded with slot arraysat 10 GHz, 30 GHz, 60 GHz, and 90 GHz <\/td>\n<\/tr>\n
110<\/td>\nFigure B.9 \u2013 10 GHz patterns of |Etotal| and Re{S}total for the pyramidal horn loaded with a slot arrayat distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array <\/td>\n<\/tr>\n
111<\/td>\nFigure B.10 \u2013 30 GHz patterns of |Etotal| and Re{S}total for the pyramidal horn loaded with a slot arrayat distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array <\/td>\n<\/tr>\n
112<\/td>\nFigure B.11 \u2013 60 GHz patterns of |Etotal| and Re{S}total for the pyramidal horn loaded with a slot arrayat distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array <\/td>\n<\/tr>\n
113<\/td>\nFigure B.12 \u2013 90 GHz patterns of |Etotal| and Re{S}total for the pyramidal horn loaded with a slot arrayat distances of a) 2 mm, b) 5 mm, c) 10 mm, and d) 50 mm from the upper surface of the slot array <\/td>\n<\/tr>\n
114<\/td>\nB.4.4 Far-field radiation patterns <\/td>\n<\/tr>\n
115<\/td>\nB.5 Antenna validation procedure
B.5.1 General
Figure B.13 \u2013 Far-field radiation patterns of a) 10 GHz, b) 30 GHz,c) 60 GHz, and d) 90 GHz pyramidal horn loaded with a slot array <\/td>\n<\/tr>\n
116<\/td>\nB.5.2 Objectives, scope, and usage specifications
B.5.3 Antenna design
B.5.4 Numerical targets
B.5.5 Reference antennas calibration
B.5.6 Antenna verification and life expectation
B.5.7 Uncertainty budget considerations <\/td>\n<\/tr>\n
117<\/td>\nB.6 Validation procedure for wideband signals
B.6.1 General
B.6.2 Validation signals
B.6.3 Validation antennas and setup
B.6.4 Target values for validation antennas transmitting wideband signals
B.6.5 Wideband signal uncertainty <\/td>\n<\/tr>\n
118<\/td>\nB.6.6 Validation procedure <\/td>\n<\/tr>\n
119<\/td>\nAnnex C (normative)Calibration and characterization of measurement probes
C.1 General
C.2 Calibration of waveguide probes
C.2.1 General
C.2.2 Sensitivity
C.2.3 Linearity <\/td>\n<\/tr>\n
120<\/td>\nC.2.4 Lower detection limit
C.2.5 Isotropy
C.2.6 Response time
C.3 Calibration for isotropic scalar E-field or H-field probes
C.3.1 General
C.3.2 Sensitivity
C.3.3 Isotropy <\/td>\n<\/tr>\n
121<\/td>\nC.3.4 Linearity
C.3.5 Lower detection limit
C.3.6 Response time
C.4 Calibration of phasor E-field or H-field probes
C.4.1 General
C.4.2 Sensitivity <\/td>\n<\/tr>\n
122<\/td>\nC.4.3 Isotropy
C.4.4 Linearity
C.4.5 Lower detection limit
C.5 Calibration uncertainty parameters
C.5.1 General
C.5.2 Input power to the antenna
C.5.3 Mismatch effect (input power measurement) <\/td>\n<\/tr>\n
123<\/td>\nC.5.4 Gain and offset distance
C.5.5 Signal spectrum
C.5.6 Setup stability <\/td>\n<\/tr>\n
124<\/td>\nC.5.7 Uncertainty for field impedance variations
C.6 Uncertainty budget template
Table C.1 \u2013 Uncertainty analysis of the probe calibration <\/td>\n<\/tr>\n
126<\/td>\nAnnex D (informative)Information on use of square or circular shapes for power density averaging area in conformity evaluations
D.1 General
D.2 Method using computational analysis
D.3 Areas averaged with square and circular shapes on planar evaluation surface
Figure D.1 \u2013 Schematic view of the assessment of the variationof sPD using square shape by rotating AUT (antenna under test) <\/td>\n<\/tr>\n
127<\/td>\nFigure D.2 \u2013 Comparison of psPD averaged using square versus circular shaped areas on planar evaluation surfaces <\/td>\n<\/tr>\n
128<\/td>\nD.4 Areas averaged with square and circular shapes on nonplanar evaluation surface
Figure D.3 \u2013 Example PD distributions withdevice next to ear evaluation surface
Table D.1 \u2013 Phase shift values for the array antenna <\/td>\n<\/tr>\n
129<\/td>\nFigure D.4 \u2013 Comparison of psPD averaged using cube cross-section (square-like) versus sphere cross-section (circular-like) shaped areas fordevice next to ear evaluation surface <\/td>\n<\/tr>\n
130<\/td>\nAnnex E (informative)Reconstruction algorithms
E.1 General
E.2 Methodologies to extract local field components and power densities
E.2.1 General <\/td>\n<\/tr>\n
131<\/td>\nE.2.2 Phase-less approaches
E.2.3 Approaches using E-field polarization ellipse measurements
E.2.4 Direct near-field measurements <\/td>\n<\/tr>\n
132<\/td>\nE.3 Forward transformation (propagation) of the fields
E.3.1 General
Figure E.1 \u2013 Simulation (left) and forward transformation from measurements applying methods described in [29] (right) of power density in the xz-plane (above) and yz-plane (below) at a distance of 2 mm for a cavity-fed dipole array at 30 GHz (see Annex B) <\/td>\n<\/tr>\n
133<\/td>\nE.3.2 Field expansion methods
E.3.3 Field integral equation methods <\/td>\n<\/tr>\n
134<\/td>\nE.4 Backward transformation (propagation) of the fields
E.4.1 General
E.4.2 Field expansion methods \u2013 the plane wave expansion <\/td>\n<\/tr>\n
135<\/td>\nE.4.3 Inverse source methods <\/td>\n<\/tr>\n
136<\/td>\nE.5 Analytical reference functions
Table E.1 \u2013 List of analytical reference functionsand associated psPDn+ target values <\/td>\n<\/tr>\n
137<\/td>\nTable E.2 \u2013 List of analytical reference functionsand associated psPDtot+ target values
Table E.3 \u2013 List of analytical reference functionsand associated psPDmod+ target values <\/td>\n<\/tr>\n
138<\/td>\nAnnex F (normative)Interlaboratory comparisons
F.1 Purpose
F.2 Reference devices
F.3 Power setup
F.4 Interlaboratory comparison \u2013 procedure <\/td>\n<\/tr>\n
139<\/td>\nAnnex G (informative)PD test and verification example
G.1 Purpose
G.2 DUT overview
G.3 Test system verification
G.4 Test setup
G.5 Power density results
G.6 Combined exposure (Total Exposure Ratio) <\/td>\n<\/tr>\n
140<\/td>\nAnnex H (informative)Applicability of plane-wave equivalent approximations
H.1 Objective
H.2 Method
H.3 Results <\/td>\n<\/tr>\n
142<\/td>\nH.4 Discussion
Figure H.1 \u2013 psPDpwe \/ psPDtot as function of distance (in units of \u03bb) from cavity-fed dipole array (CDA##G, left-side) and pyramidal horn with slot arrays (SH##G,right-side) operating at 10 GHz, 30 GHz, 60 GHz, and 90 GHz <\/td>\n<\/tr>\n
143<\/td>\nAnnex I (informative)Rationales for concepts and methods applied inthis document and IEC\/IEEE 63195-2
I.1 Frequency range
I.2 Calculation of sPD
I.2.1 Application of the Poynting vector for calculation of incident power density <\/td>\n<\/tr>\n
144<\/td>\nI.2.2 Averaging area <\/td>\n<\/tr>\n
145<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) – Measurement procedure<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2023<\/td>\n150<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":434966,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[606,2641],"product_tag":[],"class_list":{"0":"post-434959","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-33-050-10","7":"product_cat-bsi","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/434959","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/434966"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=434959"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=434959"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=434959"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}