{"id":430751,"date":"2024-10-20T07:24:31","date_gmt":"2024-10-20T07:24:31","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-iec-63150-12019\/"},"modified":"2024-10-26T14:04:41","modified_gmt":"2024-10-26T14:04:41","slug":"bs-iec-63150-12019","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-iec-63150-12019\/","title":{"rendered":"BS IEC 63150-1:2019"},"content":{"rendered":"
IEC 63150-1:2019 specifies terms and definitions, and test methods for kinetic energy harvesting devices for one-dimensional mechanical vibrations to determine the characteristic parameters under a practical vibration environment. Such vibration energy harvesting devices often have their own non-linear mechanisms to efficiently capture vibration energy in a broadband frequency range. This document is applicable to vibration energy harvesting devices with different power generation principles (such as electromagnetic, piezoelectric, electrostatic, etc.) and with different non-linear behaviour to the external mechanical excitation.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | Blank Page <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | English CONTENTS <\/td>\n<\/tr>\n | ||||||
8<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 1 Scope 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 4 Characteristics of kinetic energy harvesting devices 5 Vibration testing equipment 5.1 General 5.2 Vibration exciter Figures Figure 1 \u2013 Testing equipment for kinetic energy harvesting device for mechanical vibration <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 5.3 Mounting fixture 5.4 Acceleration sensor 5.5 Read-out circuit 5.6 Data recorder 6 Preparation of test bed and device 6.1 General 6.2 Evaluation of vibration conditions <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 6.3 Evaluation of electronic noise 7 Testing methods 7.1 External load 7.2 Testing time 7.3 Test environment 7.4 Measurement conditions <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 8 Measuring procedures 8.1 General 8.2 Single frequency response 8.3 Frequency sweeping response 8.4 Random vibration response 9 Test report <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | Annex A (informative) Example of measurement for kinetic energy harvesting device A.1 General A.2 Electret energy harvester with linear spring Figure A.1 \u2013 Photo of the electret energy harvester <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | Figure A.2 \u2013 Read-out circuit using voltage divider Tables Table A.1 \u2013 Vibration exciter used in sinusoidal vibration Table A.2 \u2013 Vibration exciter used in random vibration Table A.3 \u2013 Acceleration sensor used in sinusoidal vibration <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Figure A.3 \u2013 Output power for sinusoidal excitation at 30,4 Hz versus the external load Table A.4 \u2013 Acceleration sensor used in random vibration <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | Figure A.4 \u2013 Voltage waveforms for 30,4 Hz sinusoidal excitation at different zero-peak accelerations Table A.5 \u2013 Output voltage and power for sinusoidal excitation at the rated frequency <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Figure A.5 \u2013 Maximum, minimum, and RMS output voltages for frequency sweeping at different zero-to-peak accelerations Table A.6 \u2013 Output voltage for sinusoidal excitation with frequency sweeping <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Figure A.6 \u2013 Output power for frequency sweeping from 15 Hz to 45 Hz at differentzero-to-peak accelerations Table A.7 \u2013 Maximum output power for frequency sweeping from 15 Hz to 45 Hz <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Figure A.7 \u2013 Voltage waveforms for the random vibration with different acceleration spectral densities <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | A.3 Inverse-magnetostrictive energy harvester with nonlinear spring Figure A.8 \u2013 Photo of the magnetostrictive energy harvester Figure A.9 \u2013 Measurement circuit Table A.8 \u2013 Peak-to-peak voltage, RMS output voltage, and mean output powerfor random vibration <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | Table A.9 \u2013 Vibration exciter used in sinusoidal vibration Table A.10 \u2013 Acceleration sensor used in sinusoidal and random vibrations <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Figure A.10 \u2013 Output power for sinusoidal excitation at 98 Hz versus the external load (zero-to-peak acceleration is 9,8 m\/s2) Figure A.11 \u2013 Voltage waveforms for 116 Hz sinusoidal excitation at different zero-to-peak accelerations Table A.11 \u2013 Output voltage and power for sinusoidal excitation at the rated frequency <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Figure A.12 \u2013 Power spectra of the output voltage for frequency sweeping from 60 Hz to 180 Hz at different zero-to-peak accelerations Figure A.13 \u2013 Voltage waveforms for the random vibration 0,49 (m\/s2)2\/Hz Table A.12 \u2013 RMS output voltage and mean output power for random vibration <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | A.4 Piezoelectric energy harvester with broadband response Figure A.14 \u2013 Photo of the piezoelectric energy harvester Figure A.15 \u2013 Read-out circuit using a voltage divider <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | Table A.13 \u2013 Vibration exciter used in sinusoidal vibration Table A.14 \u2013 Vibration exciter used in random vibration Table A.15 \u2013 Acceleration sensor used in sinusoidal vibration Table A.16 \u2013 Acceleration sensor used in random vibration <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | Figure A.16 \u2013 Output power for 40 Hz sinusoidal excitation versus the external load (zero-to-peak acceleration is 0,98 m\/s2) <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Figure A.17 \u2013 Voltage waveforms for 40 Hz sinusoidal excitation at different zero-to-peak accelerations Table A.17 \u2013 Output voltage and power for sinusoidal excitation at the rated frequency <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Figure A.18 \u2013 Voltage waveforms for frequency sweeping from 20 Hz to 60 Hz at different zero-to-peak accelerations Table A.18 \u2013 Output voltage for sinusoidal excitation with frequency sweeping <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure A.19 \u2013 Power spectra of the output power for frequency sweeping from 20 Hz to 60 Hz at different zero-to-peak accelerations Table A.19 \u2013 Maximum output power for frequency sweeping from 20 Hz to 60 Hz <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | Figure A.20 \u2013 Voltage waveforms for the random vibration at different acceleration spectral densities <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Table A.20 \u2013 Peak-to-peak voltage, RMS output voltage, and mean output power for random vibration <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | Annex B (informative) Definition of random vibration <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | Figure B.1 \u2013 Random vibration with uniform acceleration spectral density <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | Figure B.2 \u2013 Example data of random vibration <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Semiconductor devices. Measurement and evaluation methods of kinetic energy harvesting devices under practical vibration environment – Arbitrary and random mechanical vibrations<\/b><\/p>\n |