{"id":417141,"date":"2024-10-20T06:14:34","date_gmt":"2024-10-20T06:14:34","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-en-61375-2-52015-2\/"},"modified":"2024-10-26T11:36:40","modified_gmt":"2024-10-26T11:36:40","slug":"bs-en-61375-2-52015-2","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-en-61375-2-52015-2\/","title":{"rendered":"BS EN 61375-2-5:2015"},"content":{"rendered":"

This part of IEC 61375 defines Ethernet Train Backbone (ETB) requirements to fulfil open train data communication system based on Ethernet technology.<\/p>\n

Respect of this standard ensures interoperability between local Consist subnets whatever Consist network technology (see IEC 61375-1 for more details).<\/p>\n

All Consist network definitions should take into account this standard to preserve interoperability.<\/p>\n

This standard may be additionally applicable to closed trains and multiple-unit trains when so agreed between purchaser and supplier.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
8<\/td>\nEnglish
\n
CONTENTS <\/td>\n<\/tr>\n
13<\/td>\nINTRODUCTION <\/td>\n<\/tr>\n
14<\/td>\n1 Scope
2 Normative references <\/td>\n<\/tr>\n
15<\/td>\n3 Terms, definitions, symbols, abbreviations and conventions
3.1 Terms and definitions <\/td>\n<\/tr>\n
19<\/td>\n3.2 Symbols and abbreviations <\/td>\n<\/tr>\n
21<\/td>\n3.3 Conventions
3.3.1 Base of numeric values
3.3.2 Naming conventions
3.3.3 State diagram conventions
3.3.4 Annotation of data structures
4 ETB physical layer
4.1 Train regions <\/td>\n<\/tr>\n
22<\/td>\n4.2 Physical characteristics
4.2.1 General
4.2.2 Intra car physical layer
Figures
\n
Figure 1 \u2013 ETB train regions <\/td>\n<\/tr>\n
23<\/td>\nTables
\n
Table 1 \u2013 ETB Intra car physical layer interface (1 of 2) <\/td>\n<\/tr>\n
24<\/td>\n4.2.3 Inter car physical layer <\/td>\n<\/tr>\n
25<\/td>\nTable 2 \u2013 ETB Inter car physical layer interface (1 of 2) <\/td>\n<\/tr>\n
27<\/td>\nFigure 2 \u2013 ETB Inter car at same potential <\/td>\n<\/tr>\n
28<\/td>\n4.2.4 Inter Consist physical layer
Figure 3 \u2013 ETB Inter car not at the same potential <\/td>\n<\/tr>\n
29<\/td>\nTable 3 \u2013 ETB Inter consist physical layer interface (1 of 2) <\/td>\n<\/tr>\n
30<\/td>\nFigure 4 \u2013 ETB Consist reversing <\/td>\n<\/tr>\n
31<\/td>\n4.3 Power over Ethernet (PoE)
Figure 5 \u2013 ETB Inter Consist segment
Figure 6 \u2013 ETBN PSE PoE use case <\/td>\n<\/tr>\n
32<\/td>\nFigure 7 \u2013 ETBN PD PoE use case
Figure 8 \u2013 PoE in inter-Consist <\/td>\n<\/tr>\n
33<\/td>\n4.4 ETB physical architecture and redundancy
4.4.1 General
4.4.2 Link aggregation architecture
Figure 9 \u2013 PoE PSE alternative A
Figure 10 \u2013 Redundant train backbone architecture <\/td>\n<\/tr>\n
34<\/td>\nFigure 11 \u2013 Link aggregation model <\/td>\n<\/tr>\n
35<\/td>\n4.4.3 Functions
Figure 12 \u2013 Link aggregation group
Figure 13 \u2013 Conversations over LAG <\/td>\n<\/tr>\n
36<\/td>\n5 ETB data link layer
Table 4 \u2013 ETB Switch data link layer interface (1 of 2) <\/td>\n<\/tr>\n
37<\/td>\n6 ETB network layer: IPv4 subnets definition
6.1 General
Table 5 \u2013 ETB OSI Network layer <\/td>\n<\/tr>\n
38<\/td>\n6.2 IP mapping introduction
6.3 Topology
6.3.1 General <\/td>\n<\/tr>\n
39<\/td>\n6.3.2 Closed train
Figure 14 \u2013 Hierarchical Consist topology <\/td>\n<\/tr>\n
40<\/td>\n6.4 Network IP address map
6.4.1 Global IPv4 address space
6.4.2 Train subnet definition
Figure 15 \u2013 Closed train
Table 6 \u2013 Train subnet definition <\/td>\n<\/tr>\n
41<\/td>\nTable 7 \u2013 Train subnet decomposition <\/td>\n<\/tr>\n
42<\/td>\nFigure 16 \u2013 “Subnet Id” with single Consist Network
Figure 17 \u2013 “Subnet Id” with two single Consist Networks <\/td>\n<\/tr>\n
43<\/td>\nFigure 18 \u2013 Multiple Consist Networks, without fault tolerance
Figure 19 \u2013 “Subnet Id” with ETBN redundancy <\/td>\n<\/tr>\n
44<\/td>\n6.4.3 Train IP address map summary
Figure 20 \u2013 “Subnet Id” in multiple units with ETBN redundancy
Figure 21 \u2013 IP train address space summary <\/td>\n<\/tr>\n
45<\/td>\n6.4.4 Train IP group addresses (multicast)
6.5 Particular hosts IP addresses
6.5.1 ETBN (Ethernet Train Backbone Node)
Table 8 \u2013 Train IP group addresses reserved range <\/td>\n<\/tr>\n
46<\/td>\n6.5.2 Hosts on train subnet
Table 9 \u2013 ETBN ETB IP address <\/td>\n<\/tr>\n
47<\/td>\n6.5.3 Host inside a closed train
Table 10 \u2013 Hosts IP on train subnet <\/td>\n<\/tr>\n
49<\/td>\n6.6 Some use cases
Figure 22 \u2013 Relative addressing example <\/td>\n<\/tr>\n
50<\/td>\nFigure 23 \u2013 Train composed of a single Consist Network
Figure 24 \u2013 Train composed of two single Consist Networks <\/td>\n<\/tr>\n
51<\/td>\nFigure 25 \u2013 Train composed of single Consist Network with ETBN redundancy
Figure 26 \u2013 Train composed of two Consist Networks with ETBN redundancy <\/td>\n<\/tr>\n
52<\/td>\n6.7 Dynamic IP routing management
6.7.1 Unicast routes
6.7.2 Multicast routes
Figure 27 \u2013 Train with two Consist Networks in single Consist <\/td>\n<\/tr>\n
53<\/td>\n7 ETB Transport layer <\/td>\n<\/tr>\n
54<\/td>\n8 ETB Train Inauguration: TTDP
8.1 Contents of this clause
8.2 Objectives and assumptions
8.2.1 Goals
Table 11 \u2013 Application ED common interface <\/td>\n<\/tr>\n
55<\/td>\n8.2.2 Out of scope
8.2.3 Assumptions
Figure 28 \u2013 ETBN top node reference <\/td>\n<\/tr>\n
56<\/td>\n8.3 ETBN settings
8.3.1 ETB switch port states
8.3.2 Node settings
Figure 29 \u2013 ETBN orientation capability
Table 12 \u2013 ETB switch port states <\/td>\n<\/tr>\n
57<\/td>\nFigure 30 \u2013 ETB switch in passive bypass setting
Figure 31 \u2013 ETB switch in intermediate setting <\/td>\n<\/tr>\n
58<\/td>\n8.4 General behaviour
8.5 ETBN Inauguration state diagram
8.5.1 General
Figure 32 \u2013 ETB switch in End Node Setting <\/td>\n<\/tr>\n
59<\/td>\n8.5.2 Actions
Figure 33 \u2013 ETBN Inauguration state diagram <\/td>\n<\/tr>\n
61<\/td>\n8.5.3 Transitions <\/td>\n<\/tr>\n
62<\/td>\n8.6 ETBN peers discovery
8.6.1 Internal peers detection
8.6.2 External peers detection <\/td>\n<\/tr>\n
63<\/td>\n8.6.3 Switch port states handling
8.6.4 ETB lines statuses
Figure 34 \u2013 Switch port state diagram <\/td>\n<\/tr>\n
64<\/td>\nFigure 35 \u2013 ETBN physical line state machine <\/td>\n<\/tr>\n
65<\/td>\n8.7 TTDP messages description
8.7.1 General
8.7.2 Convention
8.7.3 TTDP frame tagging
8.7.4 Transport and addressing <\/td>\n<\/tr>\n
66<\/td>\n8.7.5 TTDP HELLO frame
Figure 36 \u2013 TTDP HELLO frame LLDPDU structure
Figure 37 \u2013 LLDP organizationally TLV structure
Table 13 \u2013 TTDP destination MAC addresses <\/td>\n<\/tr>\n
70<\/td>\n8.7.6 TTDP TOPOLOGY frame
Figure 38 \u2013 TTDP HELLO frame structure
Figure 39 \u2013 TTDP specific HELLO TLV structure <\/td>\n<\/tr>\n
76<\/td>\n8.8 TTDP data structures
8.8.1 Connectivity Vector
Figure 41 \u2013 TTDP TOPOLOGY specific ETB TLV structure
Figure 42 \u2013 TTDP TOPOLOGY specific CN TLV structure <\/td>\n<\/tr>\n
77<\/td>\n8.8.2 ETBN Vector
8.8.3 Connectivity Table
Table 14 \u2013 Connectivity Vector
Table 15 \u2013 Connectivity Vector Fields
Table 16 \u2013 ETBN Vector
Table 17 \u2013 ETBN Vector Fields <\/td>\n<\/tr>\n
78<\/td>\n8.8.4 Connectivity Table CRC
Table 18 \u2013 Connectivity Table
Table 19 \u2013 Connectivity Table fields <\/td>\n<\/tr>\n
80<\/td>\n8.8.5 Train network directory
Table 20 \u2013 Train network directory
Table 21 \u2013 Train network directory fields <\/td>\n<\/tr>\n
81<\/td>\nFigure 43 \u2013 Train composition for TNDir example <\/td>\n<\/tr>\n
82<\/td>\n8.8.6 Train network directory CRC (Topology Counter)
8.8.7 Corrected topology
Table 22 \u2013 Train network directory (example) <\/td>\n<\/tr>\n
83<\/td>\n8.9 TTDP frames timing
8.9.1 TTDP HELLO <\/td>\n<\/tr>\n
84<\/td>\nFigure 44 \u2013 TTDP HELLO normal mode and recovery timing <\/td>\n<\/tr>\n
85<\/td>\n8.9.2 TTDP TOPOLOGY
Figure 45 \u2013 TTDP HELLO failure timing <\/td>\n<\/tr>\n
86<\/td>\nFigure 46 \u2013 TTDP TOPOLOGY frames handling <\/td>\n<\/tr>\n
87<\/td>\n8.10 Inauguration Train Application interface
8.11 Degraded modes
8.11.1 Late insertion ETBN <\/td>\n<\/tr>\n
88<\/td>\n8.11.2 Losing ETBN
8.11.3 End ETBN failure and partial topology counter <\/td>\n<\/tr>\n
89<\/td>\n8.12 Some discovery timing
8.12.1 ETBN wakeup
Figure 47 \u2013 TTDP ETBNs wake up timing <\/td>\n<\/tr>\n
90<\/td>\n8.12.2 ETBN failure
Figure 48 \u2013 TTDP ETBN failure timing <\/td>\n<\/tr>\n
91<\/td>\n8.12.3 Consist coupling
Figure 49 \u2013 TTDP Consist coupling timing <\/td>\n<\/tr>\n
92<\/td>\n9 ETB ETBN redundancy
Figure 50 \u2013 Example of ETBN IP routing table without redundancy
Figure 51 \u2013 Example of ETBN IP routing table with redundancy <\/td>\n<\/tr>\n
93<\/td>\n10 ETB physical train naming convention (optional)
10.1 General
10.2 ETB Train domain <\/td>\n<\/tr>\n
94<\/td>\n10.3 Hostname
Figure 52 \u2013 ETB train domain defintion <\/td>\n<\/tr>\n
95<\/td>\n11 ETB Quality of Service
11.1 Contents of this clause
11.2 Frame forwarding
11.2.1 ETBN switching rate
11.2.2 No Head-of-Line blocking
11.2.3 Switching priorities
Table 23 \u2013 DSCP field mapping <\/td>\n<\/tr>\n
96<\/td>\n11.2.4 Switching queuing scheme
11.3 Priority of Inauguration frames
11.4 ETB ingress rate limiting
11.5 ETB egress rate shaping
11.6 ETB data classes
Table 24 \u2013 ETB Switching Priorities <\/td>\n<\/tr>\n
97<\/td>\n12 ETB Management and monitoring
13 ETB Application interface
13.1 Contents of this clause
13.2 Abstract communication model <\/td>\n<\/tr>\n
98<\/td>\n13.3 ETB Process Data and Message Data protocols
13.4 ETB protocol transparency
13.5 ETBN interfaces
13.5.1 Application
Figure 53 \u2013 Abstract communication model for ETB communication <\/td>\n<\/tr>\n
99<\/td>\n13.5.2 Maintenance and monitoring
Table 25 \u2013 Train Topology Discovery Object <\/td>\n<\/tr>\n
100<\/td>\n14 ETB conformity statement <\/td>\n<\/tr>\n
101<\/td>\nAnnex\u00a0A (normative)Summary of ETB sizing parameters
Table A.1 \u2013 ETB sizing parameters <\/td>\n<\/tr>\n
102<\/td>\nAnnex\u00a0B (normative)Physical topology building algorithm
Figure B.1 \u2013 Physical topology building <\/td>\n<\/tr>\n
105<\/td>\nAnnex\u00a0C (normative)TTDP MIB definition <\/td>\n<\/tr>\n
107<\/td>\nFigure C.1 \u2013 TTDP MIB tree view <\/td>\n<\/tr>\n
125<\/td>\nBibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

Electronic railway equipment. Train communication network (TCN) – Ethernet train backbone<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
BSI<\/b><\/a><\/td>\n2015<\/td>\n128<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":417150,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[775,2641],"product_tag":[],"class_list":{"0":"post-417141","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-45-060-01","7":"product_cat-bsi","9":"first","10":"instock","11":"sold-individually","12":"shipping-taxable","13":"purchasable","14":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/417141","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/417150"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=417141"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=417141"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=417141"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}