BS EN IEC 61139-2:2022
$215.11
Industrial networks. Single-drop digital communication interface – Functional safety extensions
Published By | Publication Date | Number of Pages |
BSI | 2022 | 206 |
IEC 61139-2:2022 specifies the extensions to SDCI in IEC 61131-9 for functional safety. This comprises: • a standardized OSSDe interface for redundant switching signals based on IEC 61131-2, • minor modifications/extensions to state machines of SDCI to support the safety operations, • a lean functional safety communication protocol on top of the standard SDCI communication which is a black channel according to IEC 61784-3:2021, • protocol management functions for configuration, parameterization, and commissioning, • IODD extensions for functional safety, • a Device tool interface to support Dedicated Tools according to functional safety standards. This document does not cover: • communication interfaces or systems including multi-point or multi-drop linkages, • communication interfaces or systems including multi-channel or encrypted linkages, • wireless communication interfaces or systems, • integration of SDCI-FS into upper-level systems such as fieldbuses/FSCPs.
PDF Catalog
PDF Pages | PDF Title |
---|---|
2 | undefined |
7 | Annex ZA (normative)Normative references to international publicationswith their corresponding European publications |
9 | English CONTENTS |
19 | FOREWORD |
21 | INTRODUCTION Figures Figure 1 – Positioning of SDCI-FS in functional safety automation |
23 | Figure 2 – Relationship of this document to standards |
24 | 1 Scope 2 Normative references |
25 | 3 Terms, definitions, symbols, abbreviated terms, and conventions 3.1 Terms and definitions 3.2 Common terms and definitions |
28 | 3.3 Terms and definitions related to SDCI-FS |
30 | 3.4 Symbols and abbreviated terms |
31 | 3.5 Conventions 3.5.1 Behavioral descriptions |
32 | 3.5.2 Memory and transmission octet order 4 Overview of SDCI-FS 4.1 Purpose of the technology and feature levels 4.1.1 Base SDCI-FS technology Figure 3 – Memory and transmission octet order Figure 4 – SDCI-FS communication layer model |
33 | 4.1.2 From “analog” and “switching” to communication Figure 5 – Port interface extensions for SDCI-FS |
34 | 4.1.3 Minimized paradigm shift from FS-DI to FS-Master Figure 6 – Migration to SDCI-FS |
35 | 4.1.4 Following the SDCI paradigm (SIO vs. OSSDe) Figure 7 – Minimized paradigm shift from FS-DI to FS-Master Figure 8 – FS-Master types and feature levels |
36 | Figure 9 – Original pin layout of SDCI (port class A) |
37 | 4.1.5 Port class B Figure 10 – Optimized OSSDe commissioning with FS-Master Tables Table 1 – Operational modes of feature level “a” to “c” (port class A) |
38 | 4.1.6 “USB-Master” with safety parameterization 4.1.7 Interoperability matrix of safety devices Figure 11 – Level “d” of an FS-Master (Class B) Figure 12 – Off-site configuration and parameterization |
39 | 4.2 Positioning within the automation hierarchy Table 2 – Interoperability matrix of safety devices |
40 | 4.3 Wiring, connectors, and power supply 4.4 Relationship to SDCI Figure 13 – SDCI-FS within the automation hierarchy |
41 | 4.5 Communication features and interfaces 4.6 Parameterization |
42 | 4.7 Role of FS-Master and FS-Gateway 4.8 Mapping to upper-level systems 4.9 Structure of the document 5 Extensions to the Physical Layer (PL) 5.1 Overview |
43 | 5.2 Extensions to PL services 5.2.1 PL_SetMode 5.2.2 PL_Ready Figure 14 – The SDCI physical layer of an FS-Master (class A) Figure 15 – The physical layer of an FS-Device (class A) Table 3 – PL_Ready |
44 | 5.3 Transmitter/receiver 5.3.1 Assumptions for the expansion to OSSDe 5.3.2 OSSDe specifics Figure 16 – Cross compatibility OSSD and OSSDe |
45 | Figure 17 – Principle OSSDe function Table 4 – OSSD states and conditions |
46 | Figure 18 – Test pulses to detect cross connection faults Table 5 – Cross connection faults |
47 | 5.3.3 Start-up of an FS-Device (Ready pulse) Figure 19 – OSSD timings Figure 20 – Typical start-up of an OSSD sensor Figure 21 – Start-up of an FS-Device |
48 | 5.3.4 Electric characteristics of a receiver in FS-Device and FS-Master 5.4 Electric and dynamic characteristics of an FS-Device Figure 22 – Switching thresholds for FS-Device and FS-Master receivers Table 6 – Electric characteristics of a receiver |
49 | Figure 23 – Reference schematics (one OSSDe channel) Figure 24 – Voltage level definitions |
50 | Table 7 – Electric and dynamic characteristics of the FS-Device (OSSDe) |
51 | 5.5 Electric and dynamic characteristics of an FS-Master port (OSSDe) Table 8 – Electric and dynamic characteristics of the Port interface |
52 | 5.6 FS-Master port FS-DI interface 5.7 Wake-up coordination Figure 25 – Charge capability at power-up Figure 26 – OSSDe input filter conflict resolution |
53 | 5.8 Fast start-up 5.9 Power supply Figure 27 – Start-up of an FS-Device Figure 28 – Required fast start-up timings |
54 | 5.10 Medium 5.10.1 Constraints 5.10.2 Connectors 5.10.3 Cable characteristics 6 Extensions to SIO 7 Extensions to the data link layer (DL) 7.1 Overview 7.2 State machine of the FS-Master DL-mode handler Table 9 – Cable characteristics |
55 | Figure 29 – State machine of the FS-Master DL-mode handler |
56 | 7.3 State machine of the FS-Device DL-mode handler Table 10 – State transition tables of the FS-Master DL-mode handler |
57 | Figure 30 – State machine of the FS-Device DL-mode handler Table 11 – State transition tables of the FS-Device DL-mode handler |
58 | 8 Extensions to the Master Configuration Manager (CM) Figure 31 – Extension to the Configuration Manager (VerifyRecord) |
59 | 9 Extensions of the FS-Device 9.1 Principle architecture and models 9.1.1 FS-Device architecture Table 12 – State transition tables of the Configuration Manager |
60 | 9.1.2 FS-Device model Figure 32 – Principle architecture of the FS-Device |
61 | 9.2 Parameter Manager (PM) 9.3 Process Data Exchange (PDE) 9.4 Data Storage (DS) 9.4.1 General considerations and extensions including safety Figure 33 – The FS-Device model |
62 | 9.4.2 Backup levels 10 Extensions of the FS-Master 10.1 Principle architecture Table 13 – Extension to Data Storage (DS) state machine Table 14 – Data Storage Backup Levels |
63 | 10.2 SMI service extensions 10.2.1 Overview Figure 34 – Principle architecture of the FS-Master |
64 | Table 15 – SMI services used for FS-Master |
65 | 10.2.2 SMI_FSMasterAccess Figure 35 – SMI service extensions |
66 | Table 16 – SMI_FSMasterAccess |
67 | 10.2.3 SMI_SPDUIn 10.2.4 SMI_SPDUOut 10.2.5 SMI_FSPDInOut |
68 | Table 17 – SMI_FSPDInOut |
69 | 10.3 ArgBlock extensions 10.3.1 Overview 10.3.2 FSMasterAccess Table 18 – ArgBlock types and ArgBlockIDs |
70 | 10.3.3 FSCPAuthenticity 10.3.4 FSPortConfigList Table 19 – FSMasterAccess Table 20 – FSCPAuthenticity |
71 | Table 21 – FSPortConfigList |
73 | 10.3.5 FSPortStatusList Table 22 – FSPortStatusList |
74 | 10.3.6 SPDUIn 10.3.7 SPDUOut Table 23 – SPDUIn |
75 | 10.3.8 FSPDInOut Table 24 – SPDUOut Table 25 – FSPDInOut |
76 | 10.4 Safety Layer Manager (SLM) 10.4.1 Purpose 10.4.2 FS_PortModes 10.4.3 FSP parameter |
77 | Figure 36 – FSP parameter use cases Table 26 – Use case reference table |
80 | 10.5 Process Data Exchange (PDE) Figure 37 – PDE Splitter |
81 | 10.6 Data Storage (DS) 11 Safety communication layer (SCL) 11.1 Functional requirements 11.2 Communication errors and safety measures Figure 38 – PDE Composer |
82 | 11.3 SCL services 11.3.1 Positioning of safety communication layers (SCL) Table 27 – Communication errors and safety measures |
83 | 11.3.2 FS-Master SCL services Figure 39 – Positioning of the SDCI-FS Safety Communication Layer (SCL) Figure 40 – FS-Master Safety Communication Layer services |
84 | 11.3.3 FS-Device SCL services Table 28 – SCL services of FS-Master |
85 | Figure 41 – FS-Device Safety Communication Layer services Table 29 – SCL services of FS-Device |
86 | 11.4 SCL protocol 11.4.1 Protocol phases to consider Figure 42 – Protocol phases to consider |
87 | 11.4.2 FS-Device faults 11.4.3 Safety PDU (SPDU) Figure 43 – Safety PDUs of FS-Master and FS-Device Table 30 – Protocol phases to consider |
88 | 11.4.4 FS-Input and FS-Output data 11.4.5 Port number 11.4.6 Status and control Table 31 – Control and counting (Control&MCnt) Table 32 – Status and counting mirror (Status&DCnt) |
89 | 11.4.7 CRC signature Table 33 – MCount and DCount_i values |
90 | 11.4.8 TADI safety considerations (informative) Figure 44 – The 1 % share rule of IEC 61784-3:2021 |
91 | 11.4.9 Data types for SDCI-FS Table 34 – FS process I/O data types Table 35 – Rules for the layout of values and qualifiers |
92 | 11.5 SCL behavior 11.5.1 General 11.5.2 SCL state machine of the FS-Master Table 36 – Order of values and qualifier |
93 | Figure 45 – SCL state machine of the FS-Master Table 37 – Definition of terms used in SCL state machine of the FS-Master |
94 | Table 38 – FS-Master SCL states and transitions |
95 | 11.5.3 SCL state machine of the FS-Device |
96 | Figure 46 – SCL state machine of the FS-Device Table 39 – Definition of terms used in SCL state machine of the FS-Device |
97 | Table 40 – FS-Device SCL states and transitions |
98 | 11.5.4 Sequence charts for several use cases |
99 | Figure 47 – FS-Master and FS-Device both with power ON |
100 | Figure 48 – FS-Master power OFF ( ON |
101 | Figure 49 – FS-Device with delayed SCL start |
102 | Figure 50 – FS-Device with power OFF and ON |
103 | Figure 51 – FS-Master detects CRC signature error |
104 | Figure 52 – FS-Device detects CRC signature error |
105 | 11.5.5 Monitoring of safety times Figure 53 – Monitoring of the SCL cycle time Table 41 – Timing constraints |
106 | 11.5.6 Reaction in the event of a malfunction |
108 | 11.5.7 Start-up (communication) 11.6 SCL management 11.6.1 Parameter overview (FSP and FST) |
109 | Figure 54 – Parameter types and assignments |
110 | 11.6.2 Parameterization approaches Figure 55 – FSCP-Host-centric system |
111 | 11.7 Integrity measures 11.7.1 IODD integrity 11.7.2 Tool integrity 11.7.3 Transmission integrity 11.7.4 Verification record |
112 | 11.7.5 Authentication 11.7.6 Storage integrity Figure 56 – Structure of the FSP_VerifyRecord |
113 | 11.7.7 FS I/O data structure integrity 11.7.8 Technology parameter (FST) based on IODD Figure 57 – Start-up of SDCI-FS |
114 | 11.7.9 Technology parameter (FST) based on existing Dedicated Tool (IOPD) Figure 58 – Securing of FST parameters via dedicated tool |
115 | 11.8 Creation of FSP and FST parameters Figure 59 – Modification of FST parameters via Device Tool |
116 | 11.9 Integration of Dedicated Tools (IOPD) 11.9.1 IOPD interface 11.9.2 Standard interfaces Figure 60 – Creation of FSP and FST parameters |
117 | 11.9.3 Backward channel Figure 61 – Example of a communication hierarchy |
118 | 11.10 Validation 11.11 Passivation 11.11.1 Motivation and means 11.11.2 Port selective (FS-Master) Figure 62 – Motivation for Port selective passivation |
119 | 11.11.3 Signal selective (FS-Terminal) 11.11.4 Qualifier settings in case of communication 11.11.5 Qualifier handling in case of OSSDe Figure 63 – Qualifier handler (communication) Figure 64 – Qualifier handler (OSSDe) Table 42 – Qualifier bits “GOOD/BAD” |
120 | 11.12 SCL diagnosis Figure 65 – Qualifier behavior per FS-Master port Table 43 – State transition Table for the qualifier behavior |
121 | 12 Functional safe processing (FS-P) 12.1 Recommendations for efficient I/O mappings 12.2 Embedded FS controller Figure 66 – Mapping efficiency issues |
122 | Annexes Annex A (normative)Extensions to parameters A.1 Indices and parameters for SDCI-FS Table A.1 – Indices for SDCI-FS |
123 | A.2 Parameters in detail A.2.1 FSP_Authenticity A.2.2 FSP_Port |
124 | A.2.3 FSP_AuthentCRC A.2.4 FSP_ProtVersion A.2.5 FSP_ProtMode A.2.6 FSP_Watchdog Table A.2 – Coding of protocol version Table A.3 – Coding of protocol mode |
125 | A.2.7 FSP_IO_StructCRC Figure A.1 – Instance of an FS I/O data description Table A.4 – Generic FS I/O data structure description |
126 | A.2.8 FSP_TechParCRC A.2.9 FSP_ProtParCRC A.2.10 FSP_VerifyRecord A.2.11 FSP_TimeToReady Figure A.2 – Example FS I/O data structure with non-safety data |
127 | A.2.12 FSP_MinShutDownTime A.2.13 FSP_WCDT A.2.14 FSP_OFDT A.2.15 FSP_ParamDescCRC Figure A.3 – Securing of safety parameters |
128 | Annex B (normative)Extensions to EventCodes B.1 Additional FS-Device EventCodes B.2 Additional Port EventCodes Table B.1 – FS-Device SCL specific EventCodes |
129 | Table B.2 – FS-Master SCL specific EventCodes |
130 | Annex C (normative)Extensions to Data Types C.1 Data types for SDCI-FS C.2 BooleanT (bit) Table C.1 – Data types for SDCI-FS Table C.2 – BooleanT for SDCI-FS Table C.3 – Example of BooleanT within a RecordT |
131 | C.3 IntegerT (16) C.4 IntegerT (32) Figure C.1 – Example of a BooleanT data structure Table C.4 – IntegerT(16) Table C.5 – IntegerT(16) coding |
132 | C.5 Safety Code Figure C.2 – Safety Code of an output message Figure C.3 – Safety Code of an input message Table C.6 – IntegerT(32) Table C.7 – IntegerT(32) coding |
133 | Annex D (normative)CRC generator polynomials D.1 Overview of CRC generator polynomials D.2 Residual error probabilities Table D.1 – CRC generator polynomials for SDCI-FS |
134 | Figure D.1 – CRC-16 generator polynomial Figure D.2 – CRC-32 generator polynomial |
135 | D.3 Implementation considerations D.3.1 Overview D.3.2 Bit shift algorithm (16 bit) D.3.3 Lookup table (16 bit) Figure D.3 – Bit shift algorithm in “C” language (16 bit) Figure D.4 – CRC-16 signature calculation using a lookup table Table D.2 – Definition of variables used in Figure D.3 |
136 | Table D.3 – Definition of variables used in Figure D.4 Table D.4 – Lookup Table for CRC-16 signature calculation |
137 | D.3.4 Bit shift algorithm (32 bit) D.3.5 Lookup table (32 bit) Figure D.5 – Bit shift algorithm in “C” language (32 bit) Figure D.6 – CRC-32 signature calculation using a lookup table Table D.5 – Definition of variables used in Figure D.5 Table D.6 – Definition of variables used in Figure D.4 |
138 | D.3.6 Seed values Table D.7 – Lookup Table for CRC-32 signature calculation |
139 | D.3.7 Octet order for CRC calculation |
140 | Annex E (normative)IODD extensions E.1 General E.2 Schema E.3 IODD constraints E.3.1 General rules E.3.2 Description of the IODD structure |
147 | E.3.3 Behavior of “Reset” SystemCommands in SDCI-FS |
148 | E.3.4 Profile Characteristic E.3.5 ProcessDataInput and ProcessDataOutput E.4 IODD conventions E.4.1 Naming E.4.2 Process Data (PD) Table E.1 – Specific behavior of FS-Device “Reset” SystemCommands |
149 | E.4.3 IODD conventions for user interface E.4.4 Master Tool features E.5 Securing E.5.1 General |
150 | E.5.2 DefaultValues for FSP E.5.3 FSP_Authenticity E.5.4 FSP_Protocol Figure E.1 – Algorithm to build the FSP parameter CRC signatures Table E.2 – User actions to replace DefaultValues |
151 | E.5.5 FSP_IO_Description E.5.6 Sample serialization for FSP_ParamDescCRC Table E.3 – RecordItems of FSP_Protocol where allowed values shall be serialized Table E.4 – Sample serialization for FSP_ParamDescCRC |
152 | E.5.7 FST and FSP parameters and Data Storage E.5.8 Sample IODD of an FS-Device |
163 | Annex F (normative)Device Tool Interface (DTI) for SDCI F.1 Purpose of DTI F.2 Base model |
164 | F.3 Invocation interface F.3.1 Overview Figure F.1 – Principle of DTI invocation interface |
165 | F.3.2 Detection of Device Tool Figure F.2 – Structure of the registry |
166 | Figure F.3 – Example of a DTI registry |
168 | F.3.3 Program Interface Description – PID Figure F.4 – Detection of a Device tool in registry |
169 | Figure F.5 – Menu for Device Tool invocation Table F.1 – Description of PID file elements |
171 | F.3.4 Temporary Parameter File – TPF |
172 | Table F.2 – Elements of a TPF |
176 | F.3.5 Temporary Backchannel File – TBF |
177 | Table F.3 – Elements of the TBF |
178 | F.3.6 Temporary Acknowledgment File – TAF F.3.7 Invocation behavior Table F.4 – Elements of the TAF |
179 | F.4 Device data objects (DDO) F.4.1 General Table F.5 – Invocation cases and behaviors |
180 | F.4.2 Structure of DDO package F.5 Communication Interface F.5.1 General Figure F.6 – Purpose of Device data objects (DDO) |
181 | F.5.2 Principle of DTI communications Figure F.7 – Communication routes between Device Tool and Device Figure F.8 – Routing across networks and SDCI |
182 | F.5.3 Gateways F.5.4 Configuration of the Communication Server Figure F.9 – Communication Server |
183 | F.5.5 Definition of the Communication Interface F.5.6 Sequence for establishing a communication relation Figure F.10 – Sequence chart for establishing communication |
184 | F.5.7 Usage of the Communication Server in stand-alone mode Figure F.11 – Create Communication Server instance |
185 | F.5.8 SDCI specifics F.5.9 Changing communication settings Figure F.12 – Example of a Connect Request XML document for SDCI Table F.6 – Communication Schema mapping |
186 | F.6 Reaction on incorrect Tool behavior F.7 Compatibility F.7.1 Schema validation Table F.7 – Reaction on incorrect Tool behavior |
187 | F.7.2 Version policy F.8 Scalability F.8.1 Scalability of a Device Tool Table F.8 – DTI conformance classes Table F.9 – DTI feature levels of Device Tools |
188 | F.8.2 Scalability of a Master Tool F.8.3 Interactions at conformance class combinations F.9 Schema definitions F.9.1 General F.9.2 Schema of the PID Figure F.13 – XML schema of the PID file Table F.10 – Interactions at conformance class combinations |
190 | F.9.3 Schema of the TPF Figure F.14 – XML schema of the TPF |
192 | F.9.4 Schema of the TBF Figure F.15 – XML schema of a TBF |
193 | F.9.5 Schema of the TAF |
194 | F.9.6 Schema of DTI primitives |
196 | Annex G (normative)Main scenarios of SDCI-FS G.1 Overview Table G.1 – Main scenarios of SDCI-FS |
197 | G.2 Sequence chart of commissioning |
198 | G.3 Sequence chart of replacement Figure G.1 – Commissioning with test and armed operation |
199 | G.4 Sequence chart of misconnection Figure G.2 – FS-Device replacement Figure G.3 – FS-Device misconnection |
200 | Annex H (normative)System requirements H.1 Indicators H.1.1 General H.1.2 OSSDe H.1.3 Safety communication H.1.4 Acknowledgment request H.2 Installation guidelines, electrical safety, and security |
201 | H.3 Safety function response time H.4 Duration of demands H.5 Maintenance and repair H.6 Safety manual |
202 | Annex I (informative)Information for test and assessmentof SDCI-FS components |
203 | Bibliography |